Comparison of Neural Response Telemetry (NRT) results of cochlear implanted children in view of pre-operative Auditory Brainstem Response (ABR)

Selim Unsal1*
Mehmet Gunduz2

1 Department of Audiology and Speech Pathology, Istinye University, Faculty of Health Sciences, Turkey
2 Department of Otolaryngology Head and Neck Surgery, Wakayama Medical University, Japan

*Send correspondence to: Selim Unsal
Department of Audiology and Speech Pathology, Istinye University, Faculty of Health Sciences, Turkey, Email: sunsal@istinye.edu.tr Phone: +905535938536

Paper submitted to the ITJ-EM (Editorial Manager System) on October 15, 2019; and accepted on December 06, 2019.

ABSTRACT

Objective: To compare the Neural Response Telemetry (NRT) results of the cochlear implanted children who showed wave 5 and who could not, in preimplantation ABR.

Material and method: 24 children (11 boys, 13 girls) with bilateral profound sensorineural hearing loss participated in this study. Age of children ranged between 13 and 60 months (mean 30 months). All participated children were implanted with Cochlear® Nucleus brand devices. In preoperative ABR evaluation with click stimulus in 100 dBNHL intensity level, 9 children showed wave V and 15 children did not. We compared intraoperative NRT results of 1st, 6th, 11th, 16th and 22nd electrodes, those were selected from 22 electrodes, of the two groups.

Results: There was no statistically significant difference between the children who showed wave V and who did not in preoperative ABR, when compared the intraoperative NRT results of 1st, 6th, 11th, 16th and 22nd electrodes (p>0.05).

Conclusion: Intraoperative NRT was obtained in all the implanted children with bilateral profound sensorineural hearing loss, even if they received wave V or not in preoperative ABR. There was no difference between any of the parameters of the test results of the two groups. Normal NRT results can be achievable when there is no wave V in preoperative ABR.

Keywords: Cochlear implant, NRT, ABR.
INTRODUCTION

Cochlear implant is a complex device that can be placed surgically to the children and adults, who have bilateral profound sensorineural hearing loss and could not benefit from hearing aids1-3. Electrodes are placed in cochlea to stimulate the cochlear nerve and mimic the tonotopic organization of cochlea. Electrical impulse bypasses the damaged hair cells and directly stimulates the cochlear nerve fibers4. With this stimulation action potential is formed in the nerve fibers and perceived as the hearing sensation5-7. Neural Response Telemetry (NRT) is a method that directly measures the compound action potential in the cochlear nerve of the cochlear implant users8. This stimulation is the main purpose of the cochlear implant. Action potentials of the cochlear nerve can be measured in both intraoperative and postoperative period. In pediatric group, cochlear implant decision must be made with the complete audiological examination. Audiological evaluation includes immittancemetry, ipsi and contralateral acoustic reflexes, Otoacoustic Emissions (OAE), free field evaluations and Auditory Brainstem Response (ABR)9-11. Wave V cannot be achieved in those who have severe or profound sensorineural hearing loss in ABR test. This situation may cause a negative impression such as, the one cannot benefit from cochlear implant when deciding implantation. We aimed to show action potential in the Neural Response Telemetry (NRT) of the cochlear implanted pediatric group patients who could not show wave V in pre implantation ABR12.

MATERIALS AND METHODS

This study was carried out in Turgut ozal University Hospital, ENT Department. All cochlear implant candidate children underwent complete audiological evaluation after full physical examination13. Twenty four children (11 boys, 13 girls) with bilateral profound sensorineural hearing loss participated in this study. Age of children ranged between 13 and 60 months (mean 30 months)14. All participated children were implanted with Cochlear® Nucleus brand devices. In preoperative ABR evaluation click stimulus was used in 100 dBnHL intensity level, and 9 children showed wave V and 15 children did not. We compared intraoperative NRT results derived from 5 electrodes (1st, 6th, 11th, 16th and 22nd electrodes) of the cochlear implanted children who showed wave 5 and who could not, in preimplantation ABR, were evaluated and compared. The two groups did not show statistically significant difference regarding NRT results (p>0.05) (Figure 1 and Figure 2).

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Min μV</th>
<th>Max μV</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>22nd electrode</td>
<td>159 μV</td>
<td>184 μV</td>
<td>169.29 ± 9.742</td>
</tr>
<tr>
<td>16th electrode</td>
<td>173 μV</td>
<td>197 μV</td>
<td>181.71 ± 9.979</td>
</tr>
<tr>
<td>11th electrode</td>
<td>181 μV</td>
<td>200 μV</td>
<td>188.29 ± 5.823</td>
</tr>
<tr>
<td>6th electrode</td>
<td>142 μV</td>
<td>193 μV</td>
<td>174.00 ± 19.391</td>
</tr>
<tr>
<td>1st electrode</td>
<td>160 μV</td>
<td>202 μV</td>
<td>196.86 ± 23.822</td>
</tr>
</tbody>
</table>

Table 1: NRT results of the children who showed wave V in ABR.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Min μV</th>
<th>Max μV</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>22nd electrode</td>
<td>146 μV</td>
<td>192 μV</td>
<td>171.00 ± 14.091</td>
</tr>
<tr>
<td>16th electrode</td>
<td>160 μV</td>
<td>213 μV</td>
<td>183.53 ± 13.768</td>
</tr>
<tr>
<td>11th electrode</td>
<td>161 μV</td>
<td>214 μV</td>
<td>190.40 ± 17.553</td>
</tr>
<tr>
<td>6th electrode</td>
<td>163 μV</td>
<td>218 μV</td>
<td>192.87 ± 15.928</td>
</tr>
<tr>
<td>1st electrode</td>
<td>175 μV</td>
<td>234 μV</td>
<td>207.33 ± 16.804</td>
</tr>
</tbody>
</table>

Table 2: NRT results of the children who could not show wave V in ABR.

RESULTS

NRT results of the cochlear implanted children who showed wave 5 and who could not, in preimplantation
DISCUSSION

Measurement of action potentials that occur in the auditory nerve is an important factor in terms of demonstrating the success of cochlear implants. Action potential of the cochlear nerve caused by cochlear implant is measured by all cochlear implant manufacturers and play a basic role in implant fitting. For recording and measuring the action potential of the cochlear nerve created by cochlear implant, Cochlear® company named the firmware as Neural Response Telemetry (NRT), Advanced Bionics® company named as Neural Response Imaging (NRI) and Med-El® company named as Auditory Nerve Response Telemetry (ART).

In our study, we obtained and compared intraoperative NRT results of 22 children who underwent cochlear implantation using Cochlear® Nucleus model implant and did not find any difference between NRT results. While it was not statistically significant, mean NRT values increased from apical to basal of the cochlea. NRT’s being a measurement which facilitates programming of the speech processor in pediatric cochlear implant users is the most important role in clinical practice. In many studies, correlation was shown between NRT and thresholds using to program speech processor. Mean NRT thresholds of the apical electrodes were found lower than the medial and basal electrodes. Reduced NRT thresholds despite the less number of spiral ganglion of the apical region is attributed to narrow structure and therefore closer location of the electrode to modiolus and spiral ganglion showed that NRT thresholds in apical region is lower. In view of these NRT results, when determining the Threshold level (T level) in programming it can be said that real thresholds of the basal electrodes are higher than medial and apical electrodes, especially for the patients who showed no response in ABR test. NRT levels in programming are between threshold/comfort (T/C level) levels, in some researches it is above the C level.

CONCLUSION

Results of NRT testing can be used in cochlear implant programming. In children appropriate cochlear implant programming is extremely important. In adults, behavioral results and satisfaction rating can be obtained but they can be rarely achieved in children. For this reason, objective parameters should be obtained by using NRT and have to be used to determine T/C levels. Identification of NRT thresholds of apical, medial and basal regions and using them in programming is important in appropriate programming. Lower NRT thresholds in apical region and increase through basal region should be taken into account and T/C levels should be programmed according to this. ABR test have an important role in cochlear implant decision and should be performed in all the children. The absence of wave V does not have negative effect on cochlear implantation.

CONFLICT OF INTEREST

The author declares no conflict of interest.

REFERENCES