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Abstract:

 

Presented here is a first-person account of the evolution of the practice of surgical
neurootology to that of medical neurootology shaped mainly by results of treatment directed
at underlying otosclerosis-like lesions of the otic capsule and metabolic factors. With new
technologies and rapidly evolving concepts, the changing treatment algorithms did not remain
constant to provide the usual evidence-based outcome analyses. However, the majority of the
patients presenting with neurootological symptoms had undergone previous medical or surgi-
cal treatment before undergoing the medical management herein described. The underlying
ongoing basic science findings over this period were linked to the clinical observations. On the
basis of the more effective results of treating neurootological disorders, recommendations are
made for future areas of investigation—mostly basic science—into developing an investiga-
tive foundation for future effective management of patients with a variety of neurootological
disorders.
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or the last 40 years, I have been immersed in the
field of clinical neurootology. My roots were in
two distinct disciplines. The first discipline is the

study of the underlying mechanisms of clinical prob-
lems in neurootology. The second discipline is surgical
neurootology.

After finishing a surgically oriented neurootology
fellowship in 1968, my next pursuit was to find surgical
cases, almost to the exclusion of any nonsurgical cases.
I was particularly focused on the surgical treatment of
dizziness and Ménière’s syndrome [1–4]. At that time,
no treatment for progressive sensorineural hearing loss
or tinnitus was available. As my clinical surgical experi-
ence grew, I was fortunate to be influenced by others to
return to my roots and explore the underlying mecha-
nisms of clinical disease. My treatments began to
change in response to my continuing observations and to
new developments in basic science and clinical practice.

Two main treatment pathways emerged as a basis for
my medical (nonsurgical) treatment of neurootological
disorders [5–8]. One treatment pathway was based on
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the recognition of an inner-ear otosclerosis-like disor-
der that was discovered while searching for an expla-
nation for an etiology underlying the clinical findings.
The other treatment pathway focused on the metabo-
lism of the inner ear. In time, my experience with these
treatment algorithms made me realize that some medi-
cal solutions are more effective than surgical solutions.
In fact, the medical managements that evolved were
disease-modifying, far more efficient, more cost-effective,
and less morbid than the invasive surgical alternatives
and previous and current medical management stan-
dards of practice.

 

PATIENTS, METHODS, AND RESULTS

 

The decisive factor in achieving successful outcomes in
patients with neurootological symptoms is the manner
in which hair cell function is modified throughout the
duration of treatment. Normal hair cell function is de-
pendent on the muscle or actin component of the hair
cell. Current hair cell research is focused on the motor
protein prestin (which is found within the actin), on re-
populating or replacing hair cells, and on actin elements
in general.

Prestin research has given us a greater understanding
of the cochlear amplifier of the outer hair cells [9–13]
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and the underlying movement of calcium in the changed
polarization of the cochlear hair cells [14,15] at the syn-
aptic junction. Repopulation has focused on the conver-
sion of supporting cells or on the unlocking of the ge-
netic code observed in lower species that allows for
repopulation. Hair cell replacement is investigated in
stem cell research.

Impaired function of hair cells is attributable to a dis-
order in the behavior of the actin elements. When hair
cell function is impaired, as demonstrated clinically by
otoacoustic emissions testing, the dysfunction appears
to be the source of the otological and neurootological
symptoms we treat in practice. If hair cell function can
be improved, the symptoms that go along with impaired
function can abate or disappear. In some of my patients,
hearing loss has been significantly reversed. With the in-
clusion of routine otoacoustic emission testing in clini-
cal practice, reversible otoacoustic emission results in-
fer regeneration of hair cell function along with parallel
clinical improvement. Though the thrust in current hair
cell research is the repopulation of hair cells or their re-
placement with stem cells, little research has been di-
rected at recovery of impaired hair cell function.

Analysis of clinical observations along with the re-
sults of evolving basic research could explain the clini-
cal findings in patients with neurootological symptoms
and lead to novel clinical treatments. Thus, this article
serves as my proposal for future ear research.

 

Clinical Treatment Observations

 

The results of my medical treatments led me to develop
further innovations, which in turn prompted more ques-
tions. Some of the answers to these questions were found
in the domain of basic science. I have been awed, at
meetings of the Association for Research in Otolaryn-
gology, by the presentations of basic science methodol-
ogies used to investigate the processes of inner-ear func-
tion. However, as basic science techniques continue to
progress, it is important that we not overlook some of
the older investigative techniques that could help ex-
plain the underlying mechanisms of some of my treat-
ment successes. Though it is true that some of the newer
investigative techniques have validated some of my ob-
servations, more research using both older and newer
techniques is required to further advance the successful
management of these patients presenting with neuro-
otological symptoms.

 

Clinical Observations of Otosclerosis

 

As mentioned, my first treatment pathway was based
on my understanding that underlying otosclerosis or
otosclerosis-like lesions of the inner ear can produce a

variety of symptoms, including Ménière’s syndrome, diz-
ziness, sensorineural hearing loss, tinnitus, hyperacusis,
and some hemicranial headaches [16]. When I was in
training, those who studied the influence of otosclerosis
on the inner ear were divided into two camps. One camp
believed that the otosclerotic lesion must impinge on the
endosteal membrane [17,18] to alter inner-ear function
[19,20], whereas the other camp believed that the mere
presence of otosclerosis in the temporal bone could in-
fluence the inner ear [21–25]. By 2005, we found the ex-
istence of lacunar and canalicular channels that lead
from the perilymphatic space into the otic capsule [26].
The presence of these channels explains how the by-
products of the otosclerotic process can enter the peri-
lymph to exert their potential effect on the sensory struc-
tures of the inner ear without the otosclerotic focus
physically impinging on the endosteal membrane. By
2008, we found that temporal bone histopathology ex-
plained some of the variety of clinical findings [27–30].

When I finished my fellowship in 1969, sodium fluo-
ride was the only medical otosclerosis treatment that
was recognized by some authors [31–40]. However, its
use was controversial at that time because of general nu-
tritional considerations and a divided clinical commu-
nity [41,42]. During my training, I was not firmly con-
vinced of the value of sodium fluoride in the treatment
of otosclerosis. However, my fellowship lasted only 1
year, and this may not have been enough time for me to
arrive at any conclusion about the efficacy of sodium
fluoride in the medical treatment of the neurootological
symptoms of otosclerosis.

In my search for candidates for acoustic tumor sur-
gery in the early 1970s, I obtained tomographic scans of
the temporal bones to more accurately examine the size
of the internal auditory canals. Though most of these
acoustic neuroma candidates did not demonstrate find-
ings that would suggest an acoustic tumor, many of them
had polytomographic evidence of otosclerosis [43,44].
Those who did demonstrate polytomographic evidence
of otosclerosis were placed on sodium fluoride to treat
the neurootological symptoms. As a result of the sodium
fluoride treatment, many patients showed evidence that
their Ménière’s syndrome had stabilized or that their
vertigo or progressive sensorineural hearing loss had
been arrested. Some patients also demonstrated a reduc-
tion in their tinnitus and hearing loss [45].

On the basis of these observations, I began treating
my otosclerosis patients with etidronate after the bis-
phosphonate group of drugs became available (around
1990) [16]. Etidronate was approved for the treatment of
Paget’s disease of the bone and demonstrated its effect
on the hearing loss in Paget’s disease [46]. Etidronate
was subsequently studied as a treatment for osteoporo-
sis. It seemed logical that this compound could also be
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considered for the treatment of otosclerosis. Indeed, eti-
dronate quickly demonstrated that it was more effective
than sodium fluoride alone for the treatment of otoscle-
rosis. My success with etidronate led me to use other
bisphosphonates to treat the inner-ear symptoms of oto-
sclerosis [16]. Newer generations of bisphosphonates
became available, and their effectiveness became pre-
dictable. They were better than sodium fluoride alone
and better than any surgical procedure directed at the
inner-ear symptoms of otosclerosis.

 

Basic Science of Otosclerosis

 

Our understanding of the active phase of otosclerosis is
that it involves an osteoclast-driven dystrophy of the otic
capsule bone. In the basic science world, the field of os-
teoclastogenesis developed around the turn of the twenty-
first century. The inner ear was found to produce a cyto-
kine called 

 

osteoprotegerin

 

 (OPG) [26]. OPG acts as a
decoy for the receptor activator of nuclear kappa B
ligand, another cytokine that attaches at its receptor site
to a macrophage, transforming it into an osteoclast. In
addition, channels that were identified connect the peri-
lymphatic space with the otic capsule, a finding that could
explain how OPG diffuses into the otic capsule [26] and
how the byproducts of the breakdown of bone (osteo-
clast activity) could diffuse in a direction opposite from
that of the otic capsule and into the perilymph to pro-
duce inner-ear symptoms. Without a membrane barrier,
these channels provide a conduit for OPG to diffuse out
into the otic capsule bone and prevent or reduce osteo-
clast production. This effect results in very low bone
turnover, which makes the normal otic capsule the hard-
est bone in the body [47]. In the past, some believed that
the otosclerotic area had to impinge on the endosteal
membrane for neurootological symptoms to occur [42].
The cytokines that are breakdown products of bone en-
ter into the perilymph through the same channels that
the OPG uses to diffuse out into the otic capsule.

Tumor necrosis factor alpha (TNF-

 

�

 

) is one of the
cytokine byproducts of osteoclastic activity that has
been shown to be toxic to the inner ear, presumably to
the hair cells [48–57]. An investigation of mice that were
genetically altered so as not to produce OPG (OPG
knockout mice) found that hearing was lost shortly after
birth; histopathology of the temporal bones revealed le-
sions similar to those seen in humans with otosclerosis
[58]. A recent investigation revealed that intraperitoneal
bisphosphonate (risedronate) in OPG knockout mice
prevented the development of otosclerosis-like lesions
and hearing loss [59]. Because bisphosphonates target
osteoclasts and because otosclerosis or otosclerosis-like
disorders are osteoclast-driven, the use of bisphospho-
nates could truly produce a disease-modifying effect.

For the last 3 years, my laboratory evaluations have
included the identification of 25-hydroxy vitamin D. I
look at vitamin D

 

3

 

 and parathyroid hormone (PTH)
levels in particular. This has allowed me to identify de-
ficient (

 

�

 

20 ng/ml) and insufficient (

 

�

 

40 ng/ml) vita-
min D levels and primary and secondary hyperparathy-
roidism even in patients whose serum calcium levels are
normal. In some patients, hyperparathyroidism occurred
secondary to insufficient vitamin D and was reversible
by appropriate vitamin D replacement [6,60–62]. Vita-
min D and PTH abnormalities may have an effect on os-
teoclastogenesis, on the neurootological symptoms of
otosclerosis [60–62], and on the efficacy of bisphospho-
nates. Patients who present with a radiological finding
of a superior semicircular canal fistula (with or without
symptoms) have been found to have abnormalities of vi-
tamin D or PTH levels or both. When these abnormali-
ties are identified and treated, many patients experience
a regression of symptoms or an improvement of oto-
acoustic emissions. My management of superior semi-
circular canal dehiscence suggests that it may represent
a metabolic disorder related to insufficient vitamin D or
to primary or secondary hyperparathyroidism. The fact
that it may not be a surgical disorder may explain why it
can recur in patients who have undergone surgery to re-
place the bone. It would also explain why canal plug-
ging is a more effective surgical treatment. In my expe-
rience, some patients who undergo surgery for chronic
otitis media with cholesteatoma have been found to have
an eroded and exposed dehiscent lateral semicircular
canal. The cholesteatoma matrix is peeled off the lateral
semicircular canal fistula and, after an interval when a
second operation for hearing restoration has been per-
formed, the bone has usually regrown over the lateral
semicircular canal. If superior semicircular canal dehis-
cence is a metabolic disorder of bone, the bony dehis-
cence may in fact spontaneously close, given the correct
conditions of vitamin D or PTH (or both).

Moreover, carbonic anhydrase, an enzyme in the stria
vascularis [63–77], has been speculated to play a role in
electrolyte homeostasis in the inner ear. Acetazolamide
is a carbonic anhydrase inhibitor that is used as a di-
uretic; in fact, it is frequently the diuretic of choice for
treating otological symptoms [78–81]. Carbonic anhy-
drase also plays a role in osteoclastogenesis. Osteoclasts
express an mRNA for carbonic anhydrase [82–89]. Car-
bonic anhydrase is found at the ruffled border of the os-
teoclast. Presumably, its function is to provide the hy-
drogen ion required to produce the acid needed to break
down bone. PTH stimulates carbonic anhydrase activity,
thereby producing the acidity necessary for osteoclastic
activity. It is possible that carbonic anhydrase produc-
tion may play a reciprocal role with the production of
OPG by the inner ear.
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The molecular biology of bone in general and
otosclerosis-like lesions in the experimental animal and
in humans explains how patients may demonstrate
radiographic evidence of otosclerosis and respond to
bisphosphonate treatment without experiencing the typ-
ical symptoms associated with otosclerosis.

 

Clinical Observations of Metabolic Aspects 
of Inner-Ear Disorders

 

The evolution of my second treatment pathway had to
do with the energy requirements of the inner ear. During
the late 1960s and mid-1970s, information was develop-
ing about an effect that blood glucose and lipids had on
the inner ear [90–104]. Other lines of thought included
concepts of thyroid disease [105,106] and evidence of
insulin disorders that could influence blood glucose levels
and their effect on inner-ear function. In 1992, published
criteria for considering abnormally elevated insulin levels
on a glucose tolerance test were developed [102]. Pa-
tients presenting with clinical neurootological symptoms
were evaluated for thyroid disease, lipid disorders, and
blood glucose and insulin disorders with the use of a 5-hour
glucose tolerance test with simultaneous insulin levels
[107]. The most common abnormalities were seen on
the glucose tolerance test. Though only a few patients
exhibited evidence of diabetes or hypoglycemia, many
of the remainder showed abnormal fluctuations in blood
glucose levels; in rare cases, a flat curve in the blood glu-
cose level was seen [103]. These glucose levels were suf-
ficiently abnormal to adversely affect the function of an
already impaired inner ear, but they did have a high prob-
ability of responding favorably to dietary management.

Coincident with these blood glucose findings were
findings of hyperinsulinemia [108–110]. During this time,
endocrinologists identified the insulin resistance syn-
drome, which was first called 

 

syndrome X

 

 and, later,

 

metabolic syndrome

 

 [111]. By virtue of the highly met-
abolic nature of the inner ear, especially the hair cells,
subtle changes in blood glucose or elevations in insulin
could explain the genesis of some inner-ear symptoms.
In addition, in patients so identified, the adversely func-
tioning inner ear acts as the “canary in the coal mine” by
identifying patients who are at risk of developing insulin
resistance syndrome and its sequelae. Untreated, the in-
sulin resistance syndrome can progress to such diseases
as non-insulin-dependent (type 2) diabetes [112,113],
hypertension [104], cardiovascular disease, and non-
alcoholic fatty liver disease.

Recent literature has suggested a possible conver-
gence of my two treatment pathways. Research in bone
metabolism and regulation has demonstrated an over-
lap with insulin regulation. One has to do with a plasma
cell membrane glycoprotein-1 (PC-1) [114,115] that is

involved in bone metabolism and may also be involved
in regulating the entry of insulin into cells [116–127].
Other findings suggest that bone in general and osteo-
calcin in particular may be potent insulin regulators
[128–136].

Research has also demonstrated that insulin and blood
glucose have an effect on inflammatory markers and
OPG and a possible effect on otic capsule bone. Fetuin-A
is a hepatic secretory protein that binds to the insulin re-
ceptor and inhibits insulin action. High levels are asso-
ciated with insulin resistance and with incident diabetes
independent of physical activity, inflammatory markers,
and other common markers of insulin resistance [137–
140]. Fetuin-A may play a role in hair cell function, and
it is known to be an inhibitor of extraosseous calcifi-
cation. In addition, a relationship between fetuin-A and
OPG has been described [141,142]. These insulin and
osseous effects may bring together a concept of the
convergence of carbohydrates in the diet and their ef-
fect on blood glucose, insulin, and osteoclast function
as evidenced by otosclerosis-like lesions. Peroxisome
proliferator-activated receptor-gamma (PPAR-

 

�

 

) agonist
belongs to the nuclear receptor superfamily composed
of ligand-activated transcription factors. It is highly ex-
pressed in adipose tissue and involved in insulin sensiti-
zation. It has also been shown to inhibit many inflam-
matory mediators, including TNF-

 

�

 

 and interleukin-6.
It has been shown to be an important regulator of air-
way inflammation and allergic rhinitis. Rosiglitazone is
a PPAR-

 

�

 

 agonist used primarily to decrease insulin re-
sistance in type 2 diabetes. Some animal experiments
showed that it has a neuroprotective effect in experimen-
tal stroke [143]. Because of this effect on inflamma-
tory mediators, rosiglitazone may inhibit the triggers of
osteoclast production and could be considered as a re-
placement for corticosteroids in the treatment of auto-
immune disorders of the inner ear.

 

Molecular Biology of Otosclerosis and Effects 
of Inflammatory Cytokines on the Inner Ear

 

Specimens obtained from patients who had previously
undergone stapedectomy to treat the conductive hearing
loss of otosclerosis showed that they clearly had otoscle-
rosis. These specimens from stapedectomy procedures
have shown the presence of TNF-

 

�

 

 in addition to strong
evidence of prior measles virus exposure [52]. Another
study in experimental animals demonstrated that the use
of a TNF-

 

�

 

-neutralizing agent could prevent the sensori-
neural hearing loss secondary to induced pneumococcal
meningitis [48]. Other authors have reported the role of
inflammatory cytokines, particularly TNF-

 

�

 

, in inner-
ear inflammation [49,54,55]. The field of osteoclastoge-
nesis informs us that one of the byproducts of osteoclast
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production and the breakdown of bone is TNF-

 

�

 

 [50,
57,144–146].

 

Vestibulocollic Headache and 
Vestibular “Migraine”

 

I became interested in a reflex that, in a number of pa-
tients, was initiated by the vestibular portion of the inner
ear and resulted in muscular contraction primarily fo-
cused in the cervical area. Many of these patients had
evidence of spasm in the muscles of the neck behind the
mastoid, usually on the same side as the vestibular ab-
normality. Some of these patients also had headache,
usually hemicranial. Some patients had only hemicranial
headache and no vestibular symptoms, yet they showed
signs of abnormal vestibular function [147].

Review of the pertinent literature related to migraine
reveals that its fundamental mechanism is still not fully
understood. It is possible that in a large number of mi-
graineurs, migraine may be a manifestation of an ab-
normally functioning vestibular system that does not
necessarily cause vestibular symptoms. It is only by
evaluating the vestibular system in these headache pa-
tients that an abnormality could be identified.

 

RECOMMENDATIONS FOR 
FUTURE RESEARCH

 

I make the following recommendations for research,
which are based on my many years of clinical observa-
tions and my review of the basic science and other clin-
ical literature relevant to these findings.

 

Otosclerosis

 

We should continue to investigate the effects of the bis-
phosphonates on OPG knockout mice. If we can iden-
tify a genetic line of experimental animal that develops
progressive sensorineural hearing loss, we can measure
the levels of OPG over time to determine whether the
inner ear produces less OPG and whether this could be a
factor in progressive sensorineural hearing loss that, in
the past, was attributed to aging or another process.

We should also experiment with mouse monoclonal
antibody to OPG. By selectively blocking or reducing
the production of OPG, this antibody could be used ex-
perimentally to determine whether hearing loss or histo-
pathological evidence of otosclerosis-like lesions can be
induced by progressive alterations in this antibody.

We need to develop imaging guidelines for radiolo-
gists to use in the early diagnosis of otosclerosis-like le-
sions. In addition to measuring otoacoustic emissions in
OPG knockout mice and performing postmortem histo-
pathology of hair cells (including mitochondria and pres-

tin), clinicians should obtain computed tomographic scans
of the temporal bones. Studies of OPG knockout mice
have revealed that they have histopathological lesions
similar to those seen in human otosclerosis. This finding
suggests that otosclerosis-like lesions may be triggered
in humans by something other than the measles virus
[51,58,148,149].

Practitioners and researchers should investigate the
effect of PTH on the otic capsule to determine whether it
can be used as a treatment for otic capsule disorders or
plays any role in otic capsule disorders. Likewise, oto-
conia should be investigated in relation to OPG, vitamin
D, and PTH. Investigations into vitamin D deficiency or
insufficiency may help us determine whether this vita-
min has any effect on the otic capsule in terms of osteo-
clastogenesis, inner-ear OPG, or hyperparathyroidism.

By inducing a vitamin D deficiency or hyperparathy-
roid state in experimental animals, we may be able to de-
termine whether superior semicircular canal dehiscence
will develop. If so, we can investigate whether the dehis-
cence will close once vitamin D or PTH levels (or both)
are restored to normal.

Finally, we should investigate the effect of acetazola-
mide alone, with PTH, and with bisphosphonates on
otoacoustic emissions in wild mice and then in OPG
knockout mice.

 

METABOLIC ABNORMALITIES 
OF THE INNER EAR

 

 The viscosity of endolymph and perilymph warrants in-
vestigation. Knowledge of the viscosity can lead to fur-
ther understanding of the tuning of the inner ear to sound.
In addition, it is likely that the viscosity of the endo-
lymph is such that otoconia may not freely move in
endolymph with a change in the position of the head,
which would contradict the current explanation for be-
nign paroxysmal positional vertigo and nystagmus.

The production of endolymph also warrants study. Is
there a feedback mechanism between the hair cells (par-
ticularly with regard to prestin) and the secretory mech-
anism of endolymph that creates the proper pressure
medium for the most efficient hair cell function? If inef-
ficient functioning reduces the rigidity of hair cells, is
there a reflex stimulus to secrete more endolymph to
overcome the necessary pressure? Would this explain
the increase in the endolymphatic volume in Ménière’s
syndrome without an alteration in the sodium and potas-
sium components of the endolymph?

Investigators should produce hypoglycemia in exper-
imental animals and test for otoacoustic emissions, for
changes in the endocochlear potential, and for postmor-
tem changes in the mitochondria of the hair cells and
supporting cells. They might also evaluate and compare
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otoacoustic emissions and mitochondria size in the hair
cells of Zucker rats and wild rats. Zucker rats produce
type 2 diabetes, and they have been found to undergo
changes in the mitochondria of skeletal muscle. Possi-
bly the effects of diabetes on the inner ear may, in turn,
have an effect on the mitochondria of the hair cells.

Researchers should induce blood glucose abnormali-
ties in OPG knockout mice and measure any additional
effect they may have on mitochondria and prestin func-
tion. A baseline investigation of the mitochondria before
the blood glucose abnormalities are induced could also
show a possible effect of TNF-

 

�

 

 on the hair cells. Re-
search projects should be integrated to include investi-
gations of PC-1, fetuin-A, and osteocalcin, as there is a
convergence of both metabolic and osteoclast functions.
In turn, these findings should be integrated with what we
know about mitochondria, hair cell actin, endocochlear
potential, endolymph viscosity, and actin (prestin) of
hair cells and the role of TNF-

 

�

 

 in inner-ear function.

 

SUMMARY

 

It is my enthusiastic hope that the information contained
herein will spark a team or teams of scientists to further
investigate the observations as yet unexplained. Finding
expertise in basic science investigation in one laboratory
appears unlikely. Regenerating hair cell function through
the use of clinical management algorithms built on a basic
research foundation could lead to the development of ef-
fective treatments for a variety of inner-ear disorders.
Effective treatment of inner-ear disorders will likely stim-
ulate more questions that can be answered only through
basic science investigations.
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